Flexural Behavior of a 30-Meter Full-Scale Simply Supported Prestressed Concrete Box Girder

Abstract
Compared with scaled-model testing, full-scale destructive testing is more reliable since the test has no size effect and can truly record the mechanical performance of the structure. However, due to the high cost, only very few full-scale destructive tests have been conducted on the flexural behavior of prestressed concrete (PC) box girders with girders removed from decommissioned bridges. Moreover, related destructive testing on the flexural behavior of a new precast box girder has been rarely reported. To investigate the flexural behavior and optimize the design, destructive testing of a 30-meter full-scale simply supported prestressed box girder was conducted at the construction site. It is illustrated that the failure mode of the tested girder was fracture of the prestressing tendon, and the corresponding maximum compressive strain in the top flange was only 1456 μ ε , which is far less than the ultimate compressive strain (3300 μ ε ). Therefore, the concrete in the top flange was not fully utilized. A nonlinear analysis procedure was performed using the finite strip method (FSM). The validity of the analysis was demonstrated by comparing the analytical results with those of the full-scale test in the field and a scaled model test in a laboratory. Using the developed numerical method, parametric analyses of the ratio of reinforcement were carried out. The prestressing tendon of the tested girder was increased from four strands to six strands in each duct. After the optimization of the prestressed reinforcement, the girder was ductile and the bearing capacity could be increased by 44.3%.
Funding Information
  • National Natural Science Foundation of China (51408218, 51508488, 51608189)
  • Hunan Education Department (18A202)