Abstract
An explicitly coupled two-dimensional (2D) multiphysics finite element method (FEM) framework comprised of thermal, phase field, mechanical and electromagnetic (TPME) equations was developed to simulate the conversion of solid kerogen in oil shale to liquid oil through in-situ pyrolysis by radio frequency heating. Radio frequency heating as a method of in-situ pyrolysis represents a tenable enhanced oil recovery method, whereby an applied electrical potential difference across a target oil shale formation is converted to thermal energy, heating the oil shale and causing it to liquify to become liquid oil. A number of in-situ pyrolysis methods are reviewed but the focus of this work is on the verification of the TPME numerical framework to model radio frequency heating as a potential dielectric heating process for enhanced oil recovery. Very few studies exist which describe production from oil shale; furthermore, there are none that specifically address the verification of numerical models describing radio frequency heating. As a result, the Method of Manufactured Solutions (MMS) was used as an analytical verification method of the developed numerical code. Results show that the multiphysics finite element framework was adequately modeled enabling the simulation of kerogen conversion to oil as a part of the analysis of a TPME numerical model.