New Search

Export article

Magnetic states of the quasi-one-dimensional iron chalcogenide Ba2FeS3

, Ling-Fang Lin, Gonzalo Alvarez, Adriana Moreo, Elbio Dagotto
Published: 15 September 2021

Abstract: Quasi-one-dimensional iron-based ladders and chains, with the 3d iron electronic density n=6, are attracting considerable attention. Recently, a new iron chain system Ba2FeS3, also with n=6, was prepared under high-pressure and high-temperature conditions. Here the magnetic and electronic phase diagrams are theoretically studied for this quasi-one-dimensional compound. Based on first-principles calculations, a strongly anisotropic one-dimensional electronic band behavior near the Fermi level was observed. In addition, a three-orbital electronic Hubbard model for this chain was constructed. Introducing the Hubbard and Hund couplings and studying the model via the density matrix renormalization group (DMRG) method, we studied the ground-state phase diagram. A robust staggered AFM region was unveiled in the chain direction, consistent with our density functional theory (DFT) calculations. Furthermore, at intermediate Hubbard U coupling strengths, this system was found to display an orbital selective Mott phase (OSMP) with one localized orbital and two itinerant metallic orbitals. At very large U/W(W=bandwidth), the system displays Mott insulator characteristics, with two orbitals half-filled and one doubly occupied. Our results for high pressure Ba2FeS3 provide guidance to experimentalists and theorists working on this one-dimensional iron chalcogenide chain material.
Keywords: http / www.w3.org/1998/Math/MathML / msub / mrow / math xmlns

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Physical Review B" .
References (70)
    Cited by 5 articles
      Back to Top Top