New Search

Advanced search
Export article
Open Access

Carbonate dual-phase improves the performance of single-layer fuel cell made from mixed ionic and semiconductor composite

S. Jouttijärvi, X. Yao, Sciprofile linkM. I. Asghar, J. Etula, A.-M. Reinecke, W. Lippmann, Sciprofile linkPeter D. Lund
Published: 19 May 2020
BMC Energy , Volume 2, pp 1-10; doi:10.1186/s42500-020-00014-3

Abstract: A mixed ionic and semiconducting composite in a single-layer configuration has been shown to work as a fuel cell at a lower temperature (500–600 °C) than a traditional solid-oxide fuel cell. The performance of a single-layer fuel cell (SLFC) is often limited by high resistive losses. Here, a eutectic mixture of alkali-carbonates was added to SLFC to improve the ionic conductivity. The dual-phase composite ionic conductor consisted of a ternary carbonate (sodium lithium potassium carbonate, NLKC) mixed with gadolinium-doped cerium oxide (GDC). Lithium nickel zinc oxide (LNZ) was used as the semiconducting material. The LNZ-GDC-NLKC SLFC reached a high power density, 582 mW/cm2 (conductivity 0.22 S/cm) at 600 °C, which is 30 times better than without the carbonate. The best results were obtained with the ternary carbonate which decreased the ohmic losses of the cell by more than 95%, whereas the SLFC with a binary carbonate (sodium lithium carbonate, NLC) showed a lower conductivity and performance (243 mW/cm2, 0.17 S/cm at 600 °C). It is concluded that adding carbonates to LNZ-GDC will improve the ionic conductivity and positively contribute to the cell performance. These results suggest a potential path for further development of SLFCs, but also imply the need for efforts on up-scaling and stability to produce practical applications with SLFC.
Keywords: nanocomposites / Ionic conductivity / single-layer fuel cell / Alkali carbonate mixture

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "BMC Energy" .
References (46)
    Back to Top Top