Deep Learning-based Models of Molecular Phenotypes for Predicting the Overall Survival in Cancer

Abstract
Aims: The aim of the study is to justify the need of deep learning predictive model in obtaining molecular phenotypes of overall cancer survival. Study Design: The study is based on the secondary qualitative data analysis through usage of systematic review. Methodology: A qualitative study has been conducted to analyse the necessity of deep learning. It also includes the need for deep learning models to obtain the imaging of the cancer cells. In the study, a detailed discussion on deep learning has been made. The analysis of the primary sources has been obtained by evaluating the quality of the resources in the study. The study also comprises of a thematic analysis that enlightens the benefits of deep learning. The study is based on the analysis of 14 primary research-based articles out of 112 quantitative articles and structuring of a systematic review from the collected data. Results: The morphological and physiological changes that occur in the cancerous cells have been clearly evaluated in the research. The result signifies the prediction can be made by implementing deep learning in terms of cancer survival. Advancements in terms of technology in the medical field can thus be improved with the help of the deep learning process. It states the advancements of the deep learning models that are helpful in predicting the model of cancer to determine survival rate. Conclusion: Deep learning is a process that is considered to be a subset of artificial intelligence. Deep learning programmes are meant to be performed for complex learning models. Although there is difference in the concept of deep learning and image processing still artificial intelligence brings both together so as to ensure better performance in image processing. The need for deep learning models has become invasive, and it helps to build a strong ground for cancer survival.