ANALYSIS AND DESIGN OF MULTI-STOREY STEEL STRUCTURES ACCORDING TO DIFFERENT METHODS IN 2018 EARTHQUAKE REGULATIONS

Abstract
Earthquake loads are the biggest obstacle to the design of multi-storey and irregular structures in countries located in the earthquake zone and with active earthquake faults. It is a dangerous natural disaster that can result in loss of life and property depending on the intensity of the earthquake. It is important to use comprehensive and up-to-date standards and regulations for the calculation of earthquake loads. In this study, considering TBDY-2018, dynamic behavior of multi-storey steel structure with irregularity called A1 Torsional Irregularity has been investigated. For seismic load calculations, mode combination method and equivalent earthquake load method, which are linear analysis methods, were used. In a 10-storey steel structure, central inverted V braces were used and the positions of these braces were changed and a total of 4 models were produced. Structural analyzes were made using the "Etabs" program. Then, the results obtained in the two methods used were compared, and in the structural analysis of the models used, it was seen that the internal forces and displacements gave greater results when the calculations were made with the Equivalent Earthquake Load Method. In addition, it has been stated that the torsional irregularity coefficient of the structure is effective in the horizontal displacement of the structure.