Circuit Compilation Methodologies for Quantum Approximate Optimization Algorithm

Abstract
The quantum approximate optimization algorithm (QAOA) is a promising quantum-classical hybrid algorithm to solve hard combinatorial optimization problems. The multi-qubit CPHASE gates used in the quantum circuit for QAOA are commutative i.e., the order of the gates can be altered without changing the output state. This re-ordering leads to the execution of more gates in parallel and a smaller number of additional SWAP gates to compile the QAOA-circuit. Consequently, the circuit-depth and cumulative gate-count become lower which is beneficial for circuit execution time and noise resilience. A less number of gates indicates a lower accumulation of gate-errors, and a reduced circuit-depth means less decoherence time for the qubits. However, finding the best-ordered circuit is a difficult problem and does not scale well with circuit size. This paper presents four generic methodologies to optimize QAOA-circuits by exploiting gate re-ordering. We demonstrate a reduction in gate-count by ≈23.0% and circuit-depth by ≈53.0% on average over a conventional approach without incurring any compilation-time penalty. We also present a variation-aware compilation which enhances the compiled circuit success probability by ≈62.7% for the target hardware over the variation unaware approach. A new metric, Approximation Ratio Gap (ARG), is proposed to validate the quality of the compiled QAOA-circuit instances on actual devices. Hardware implementation of a number of QAOA instances shows ≈25.8% improvement in the proposed metric on average over the conventional approach on ibmq 16 melbourne.
Funding Information
  • National Science Foundation

This publication has 49 references indexed in Scilit: