Identification of Active Pulmonary Tuberculosis Among Patients With Positive Interferon-Gamma Release Assay Results

Abstract
Purpose: To evaluate the accuracy of a deep learning-based computer-aided detection (CAD) system in identifying active pulmonary tuberculosis on chest radiographs (CRs) of patients with positive interferon-gamma release assay (IGRA) results in different scenarios of clinical implementation. Materials and Methods: We collected the CRs of consecutive patients with positive IGRA results. Findings of active pulmonary tuberculosis on CRs were independently evaluated by the CAD and a thoracic radiologist, followed by interpretation using the CAD. Sensitivity and specificity were evaluated in different scenarios: (a) radiologists’ interpretation, (b) radiologists’ CAD-assisted interpretation, and (c) CAD-based prescreening (radiologists’ interpretation for positive CAD results only). We conducted a reader test to compare the accuracy of the CAD with those of 5 radiologists. Results: Among 1780 patients (men, 53.8%; median age, 56 y), 44 (2.5%) were diagnosed with active pulmonary tuberculosis. The CAD-assisted interpretation exhibited a higher sensitivity (81.8% vs. 72.7%; P=0.046) but lower specificity than the radiologists’ interpretation (84.1% vs. 85.7%; PPP=0.005) at the same specificity (88.0%), and CAD-assisted interpretation significantly improved the sensitivity of radiologists’ interpretation (72.3%; P<0.001). Conclusions: For identifying active pulmonary tuberculosis among patients with positive IGRA results, deep learning-based CAD can enhance the sensitivity of interpretation. CAD-based prescreening may reduce the radiologists’ workload at an improved specificity.