New Search

Export article
Open Access

Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes

Ziteng Liu, Yinghuan Shi, Hongwei Chen, Tiexin Qin, Xuejie Zhou, Jun Huo, , , Xiangdong Zhu, Xuening Chen,
Show More
Published: 8 September 2021

Abstract: Machine learning models for exploring structure-property relation for hydroxyapatite nanoparticles (HANPs) are still lacking. A multiscale multisource dataset is presented, including both experimental data (TEM/SEM, XRD/crystallinity, ROS, anti-tumor effects, and zeta potential) and computation results (containing 41,976 data samples with up to 9768 atoms) of nanoparticles with different sizes and morphologies at density functional theory (DFT), semi-empirical DFTB, and force field, respectively. Three geometric descriptors are set for the explainable machine learning methods to predict surface energies and surface stress of HANPs with satisfactory performance. To avoid the pre-determination of features, we also developed a predictive deep learning model within the framework of graph convolution neural network with good generalizability. Energies with DFT accuracy are achievable for large-sized nanoparticles from the learned correlations and scale functions for mapping different theoretical levels and particle sizes. The simulated XRD spectra and crystallinity values are in good agreement with experiments.
Keywords: Materials science / Nanoscience and technology / general / Characterization and Evaluation of Materials / Mathematical and Computational Engineering / Theoretical / Mathematical and Computational Physics / Computational Intelligence / Mathematical Modeling and Industrial Mathematics

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "npj Computational Materials" .
References (56)
    Back to Top Top