New Search

Advanced search
Export article
Open Access

Mechanically controllable nonlinear dielectrics.

D. L. Ko, M. F. Tsai, J. W. Chen, P. W. Shao, Y. Z. Tan, J. J. Wang, S. Z. Ho, Y. H. Lai, Y. L. Chueh, Y. C. Chen, Sciprofile linkDin Ping Tsai, Sciprofile linkLong-Qing Chen, Sciprofile linkY. H. Chu
Science Advances , Volume 6; doi:10.1126/sciadv.aaz3180

Abstract: Strain-sensitive Ba x Sr1-x TiO3 perovskite systems are widely used because of their superior nonlinear dielectric behaviors. In this research, new heterostructures including paraelectric Ba0.5Sr0.5TiO3 (BSTO) and ferroelectric BaTiO3 (BTO) materials were epitaxially fabricated on flexible muscovite substrate. Through simple bending, the application of mechanical force can regulate the dielectric constant of BSTO from -77 to 36% and the channel current of BTO-based ferroelectric field effect transistor by two orders. The detailed mechanism was studied through the exploration of phase transition and determination of band structure. In addition, the phase-field simulations were implemented to provide theoretical support. This research opens a new avenue for mechanically controllable components based on high-quality oxide heteroepitaxy.
Keywords: structure / Ferroelectric / Phase / behaviors / BTO / nonlinear dielectric / Bsto / Mechanically Controllable

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Science Advances" .
References (37)
    Cited by 1 articles
      Back to Top Top