New Search

Advanced search
Export article
Open Access

Graph Entropy Associated with Multilevel Atomic Excitation

Sciprofile linkAbu Mohamed Alhasan
Published: 14 March 2020
 by  MDPI
Proceedings , Volume 46; doi:10.3390/ecea-5-06675

Abstract: A graph-model is presented to describe multilevel atomic structure. As an example, we take the double Λ configuration in alkali-metal atoms with hyperfine structure and nuclear spin I = 3 / 2 , as a graph with four vertices. Links are treated as coherence. We introduce the transition matrix which describes the connectivity matrix in static graph-model. In general, the transition matrix describes spatiotemporal behavior of the dynamic graph-model. Furthermore, it describes multiple connections and self-looping of vertices. The atomic excitation is made by short pulses, in order that the hyperfine structure is well resolved. Entropy associated with the proposed dynamic graph-model is used to identify transitions as well as local stabilization in the system without invoking the energy concept of the propagated pulses.
Keywords: entropy / graph / Quantum Network

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Proceedings" .