Cholinergic modulation of hippocampal long-term potentiation in chronic cerebral hypoperfused rats

Abstract
Vascular dementia (VaD) is one of the most common types of dementia in Alzheimer’s disease (AD). Two-vessel occlusion (2VO), also known as permanent bilateral occlusion of the common carotid arteries, induces chronic cerebral hypoperfusion (CCH) in rats, resulting in neuronal loss and inflammation (particularly in the cortex and hippocampus). The 2VO rat model has been widely used to represent VaD conditions similar to those seen in humans. Synaptic plasticity or long-term potentiation (LTP) is one of the most important neurochemical foundations in learning and memory, deficits of which occur as a result of VaD. The aim of this study is to evaluate the role of cholinergic transmission in LTP impairment of CCH rat model. There is a significant impairment of LTP following the induction of 2VO surgery (p < .05). Treatment with oxotremorine and tacrine cause significant enhancement of LTP and potentiation levels (p < .05). There are also significant effects of paired-pulse facilitations when treated with cholinergic agonists and baseline synaptic transmission with increasing stimulation intensity (p < .0001). AChE activity was only found to increase significantly in the hippocampal region (p < .05). The role of cholinergic neurotransmission has been clearly demonstrated in LTP impairment of the CCH rat model. Augmentation of synaptic transmission was clearly observed in this model via changes of basal synaptic transmission and neurotransmitter release presynaptically.