Abstract
In many communities of perching dragonflies (Odonata: Libellulidae), a size-dependent competitive hierarchy creates a positive relationship between male body size and perch height. We tested for this pattern among three similar-sized species: Celithemis elisa, C. fasciata, and C. ornata. Males were caught and photographed from May to July 2015 at Ashmore Heritage Preserve, Greenville County, SC, USA, and perch heights and perch distance to open water were measured. Five indices of body size were measured with ImageJ software: abdomen length, forewing length, hindwing length, area of forewing, and area of hindwing. Celithemis fasciata was significantly larger than the other two species for all five anatomical characters and used perches that were significantly taller and closer to open water than the other species, though these differences changed over the summer. Aggressive interactions between and within species were tallied and compared to expected distributions based on mean relative abundances derived from hourly abundance counts. Patterns of interspecific aggression were also consistent with a size-dependent hierarchy: the large C. fasciata was attacked less frequently, and the small C. ornata more frequently, than predicted by their relative abundances. We conclude that even small differences in body size may contribute to niche partitioning in perch selection. In many communities of perching dragonflies (Odonata: Libellulidae), a size-dependent competitive hierarchy creates a positive relationship between male body size and perch height. We tested for this pattern among three similar-sized species: Celithemis elisa, C. fasciata, and C. ornata. Males were caught and photographed from May to July 2015 at Ashmore Heritage Preserve, Greenville County, SC, USA, and perch heights and perch distance to open water were measured. Five indices of body size were measured with ImageJ software: abdomen length, forewing length, hindwing length, area of forewing, and area of hindwing. Celithemis fasciata was significantly larger than the other two species for all five anatomical characters and used perches that were significantly taller and closer to open water than the other species, though these differences changed over the summer. Aggressive interactions between and within species were tallied and compared to expected distributions based on mean relative abundances derived from hourly abundance counts. Patterns of interspecific aggression were also consistent with a size-dependent hierarchy: the large C. fasciata was attacked less frequently, and the small C. ornata more frequently, than predicted by their relative abundances. We conclude that even small differences in body size may contribute to niche partitioning in perch selection.