A Comparative Study of Force Measurements in Solution Using Micron and Nano Size Probe

Abstract
Atomic force microscopy (AFM) is a device that is used for not only high-resolution imaging but also used for measuring forces. It is possible to quantify the surface density change for both colloid and nano probe as well as silica surface. By changing the quantity of ions within a potassium chloride solution, it then becomes possible to evaluate the quantity of ions that attach themselves to AFM colloid probe, nano probe and silica samples. In this study, the force was measured between AFM probes and silica surface in different ionic concentrations. Two different types of AFM probe were used: a colloid probe with a radius of 500 nano-meters and a nano probe with a radius of 10 nano-meters. This study is focused on measuring how the force magnitude, especially electrical double layer force, varied between the two types of probes by changing ionic concentrations. For all test trials, the results agreed with the electrical double layer theory. Although the micron probe was almost an exact match for all ranges, the nano probe was closest within its short-range forces. This is attributed to the formula use when analyzing the electrical double layer force. Because the formula was originally calculated for the micron probe, the shape and size of the nano probe created too many variables for an exact match. Along with quantifying the forces, this experiment allowed for an observation of Van der Waals force making it possible to calculate the Hamaker constant. Conclusively, all results show that the obtained surface charge density increases as the ionic concentration increases. In addition, through the comparison of the results obtained from the nano-sized probe and the micron-sized probe, it was concluded that nano size probe mapped higher surface charge density above the silica surface than the micron-sized probe under the same conditions.