A Nonstationary Mathematical Model for Acceleration Time Series

Abstract
The choice of nonstationary stochastic models for the study is fully justified by the limitation of acceleration time series number. The three acceleration time series under consideration are used to generate a new, artificial series of ten per historical one using autoregressive moving average model. Subsequently, the average of nonlinear is utilized for the ten acceleration time series in order to obtain the spectral response of a system with single degree of freedom. Modeling of acceleration time series involves critical estimation of metrics that characterize nonstationary acceleration time series. Thus, for the stiffness degrading systems and bilinear systems, the metrics of hysteretic energy demand and displacement ductility demand during displacement are used. The applicability of artificially generated acceleration time series for the qualitative description of information was shown. More specifically, ARMA (2,2) showed the best results in the study for three accelerated time series through nonlinear response analysis. In addition, as a result, normalized hysteretic energy demand, empirically valid displacement ductility relationships, and model parameters were proposed.