Influencing the Crystallization of Glass-Ceramics by Ultrashort Pulsed Laser Irradiation after Nucleation

Abstract
An ultra-fast laser with central wavelength at 1064 nm and 10 ps pulse duration was used to tightly focus laser radiation with a microscope objective inside the volume of nucleated Lithium Aluminosilicate (LAS) glass-ceramic. The nonlinear absorption of the LAS glass-ceramic was measured for different laser parameters and a thermal simulation was performed to determine the temperature field inside the laser-modified area. After laser processing, the samples were crystallized in a furnace and the effect of the laser-induced modifications on the microstructure was analyzed with SEM. The SEM analysis shows an increase in the length and size of whisker-shaped β-spodumene crystals in the laser-modified area. By increasing the dimension of these whisker-shaped crystals, the flexural strength of LAS can be improved locally. First four-point bending flexural tests were performed to examine the influence on the mechanical properties.

This publication has 1 reference indexed in Scilit: