Thermal Design and Experimental Verification of a Three-Dimensional-Printed Resistojet

Abstract
A high-efficiency concentric tubular-type resistojet with potential application to short-term orbit-raising maneuvers has been fabricated by 3-D printing and demonstrated. The propellant flows through multiple layers of cylindrical shells, with this structure also functioning as a single-piece heater. A 6-cm-high cylinder was realized with a wall thickness of 0.2 mm, using Inconel 718. A nodal thermal analysis was performed to identify the upper-limit current at a temperature limit of the wall material, and it was revealed that an outlet gas temperature of 871 K can be achieved with 77 A of current at 0.2 g/s of mass flow rate. The designed heater was combined with a boron nitride insulator and a stainless-steel housing, and thrust was measured in a vacuum chamber with nitrogen as the propellant. At a mass flow rate of 0.2  g/s and 75 A of current, an outlet temperature of 747 K, a specific impulse of 108 s, and a heater efficiency of 72% were achieved. These results with nitrogen propellant were used to predict the performance of a tungsten-made resistojet with a hydrogen propellant, and a specific impulse of over 700 s can be expected at a heater temperature of 2000 K.