Chalcogen S∙∙∙S Bonding in Supramolecular Assemblies of Cadmium(II) Coordination Polymers with Pyridine-Based Ligands

Abstract
Two cadmium(II) coordination polymers, with thiocyanate and pyridine-based ligands e.g., 3-acetamidopyridine (3-Acpy) and niazid (nicotinic acid hydrazide, nia), namely one-dimensional {[Cd(SCN)2(3-Acpy)]}n (1) and two-dimensional {[Cd(SCN)2(nia)]}n (2), are prepared in the mixture of water and ethanol. The adjacent cadmium(II) ions in 1 are bridged by two N,S-thiocyanate ions and an N,O-bridging 3-Acpy molecule, forming infinite one-dimensional polymeric chains, which are assembled by the intermolecular N–H∙∙∙S hydrogen bonds in one direction and by the intermolecular S∙∙∙S chalcogen bonds in another direction. Within the coordination network of 2, the adjacent cadmium(II) ions are bridged by N,S-thiocyanate ions in one direction and by N,O,N’-chelating and bridging nia molecules in another direction. The coordination networks of 2 are assembled by the intermolecular N–H∙∙∙S and N–H∙∙∙N hydrogen bonds and S∙∙∙S chalcogen bonds. Being the only supramolecular interactions responsible for assembling the polymer chains of 1 in the particular direction, the chalcogen S∙∙∙S bonds are more significant in the structure of 1, whilst the chalcogen S∙∙∙S bonds which act in cooperation with the N–H∙∙∙S and N–H∙∙∙N hydrogen bonds are of less significance in the structure of 2.
Funding Information
  • Hrvatska Zaklada za Znanost (IP-2019-04-1242)