Mitigating Voltage Attacks in Multi-Tenant FPGAs

Abstract
Recent research has exposed a number of security issues related to the use of FPGAs in embedded system and cloud computing environments. Circuits that deliberately waste power can be carefully crafted by a malicious cloud FPGA user and deployed to cause denial-of-service and fault injection attacks. The main defense strategy used by FPGA cloud services involves checking user-submitted designs for circuit structures that are known to aggressively consume power. Unfortunately, this approach is limited by an attacker’s ability to conceive new designs that defeat existing checkers. In this work, our contributions are twofold. We evaluate a variety of circuit power wasting techniques that typically are not flagged by design rule checks imposed by FPGA cloud computing vendors. The efficiencies of five power wasting circuits, including our new design, are evaluated in terms of power consumed per logic resource. We then show that the source of voltage attacks based on power wasters can be identified. Our monitoring approach localizes the attack and suppresses the clock signal for the target region within 21 μs, which is fast enough to stop an attack before it causes a board reset. All experiments are performed using a state-of-the-art Intel Stratix 10 FPGA.
Funding Information
  • NSF (CNS-1619558, and CNS-1902532)
  • Intel's Corporate Research Council

This publication has 23 references indexed in Scilit: