Abstract
Sinus floor augmentation operations with calcium phosphate materials are performed when natural maxillary bone quality and quantity fail to be able to support titanium dental implants. Sinus floor augmentation can be done in one step operation when titanium implant is inserted at the same time when calcium phosphate materials. This type surgery can be done if there is enough maxillary alveolar bone height to stabilize the implant. If there is not enough bone then two step maxillary floor augmentation is performed when dental implant is placed after few months. Calcium phosphate materials are often used for maxillary sinus augmentation. These materials cause remineralization of residual maxillary alveolar bone [1]. That can be observed histologically [2,3]. However histological evaluation often means interference. Radiological investigation can be used to examine postoperatively augmented area. Nowadays cone beam computed tomography (CBCT) is the radiological method of choice for maxillofacial region due to low radiation and high quality images. There was no date found in literature on maxillary bone remineralization measured in voxel grey value density (VV) on CBCT. Rotation movement of CBCT cause beam hardening artifacts [4,5] that can alter correct measurements of bone and augmentation zone radiodensity. The aim of this study was to calculate remineralization of maxillary alveolar bone after augmentation with calcium phosphate materials radiologically and degree of artifacts created by titanium dental implant in CBCT images.