Structural and geochemical ore-forming processes in deformed gold deposits: towards a multi-scale and -method approach

Abstract
Integrating structural control on mineralisation and geochemical ore-forming processes is crucial when studying deformed ore deposits. Yet, structural and geochemical data are rarely acquired at the same scale: structural control on mineralisation is typically investigated from the district to the deposit and macroscopic scales whereas geochemical ore processes are described at the microscopic scale. The deciphering of a deformation-mineralisation history valid at every scale thus remains challenging. This study proposes a multi-scale approach that enables the reconciliation of structural and geochemical information collected at every scale, applied to the example of the Galat Sufar South gold deposit, Nubian shield, northeastern Sudan. It gathers field and laboratory information by coupling a classical petrological-structural study with high-resolution X-ray computed tomography, electron back-scattered diffraction and laser ablation inductively-coupled plasma mass spectrometry on mineralised sulphide mineral assemblages. This approach demonstrates that there is a linear control on mineralisation expressed from the district to microscopic scales at the Galat Sufar South gold deposit. We highlight the relationships between Atmur-Delgo suturing tectonics, micro-deformation of sulphide minerals, syn-pyrite recrystallisation metal remobilisation, gold liberation and ore upgrading. Our contribution therefore represents another step forward a holistic field-to-laboratory approach for the study of any other sulphide-bearing, structurally-controlled ore deposit type. Supplementary material at https://doi.org/10.6084/m9.figshare.c.5635726