New Search

Export article
Open Access

Temporal Fusion Approach for Video Classification with Convolutional and LSTM Neural Networks Applied to Violence Detection

Jean Phelipe De Oliveira Lima, Carlos Maurí­cio Seródio Figueiredo

Abstract: In modern smart cities, there is a quest for the highest level of integration and automation service. In the surveillance sector, one of the main challenges is to automate the analysis of videos in real-time to identify critical situations. This paper presents intelligent models based on Convolutional Neural Networks (in which the MobileNet, InceptionV3 and VGG16 networks had used), LSTM networks and feedforward networks for the task of classifying videos under the classes "Violence" and "Non-Violence", using for this the RLVS database. Different data representations held used according to the Temporal Fusion techniques. The best outcome achieved was Accuracy and F1-Score of 0.91, a higher result compared to those found in similar researches for works conducted on the same database.
Keywords: models / automation / Violence / videos / Temporal Fusion / Convolutional / Neural / LSTM

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Inteligencia Artificial" .
Back to Top Top