Abstract
Communication networks are complex information systems influenced by a vast amount of factors. It is critically important to forecast the paths that data take to verify the network, check its security and plan its updates. Model allows exploring processes that take place in the network without affecting performance and availability of a real network itself. With modelling it becomes possible to investigate the results of infrastructural changes introduced to the network before actually implementing them. It is important to be able to formally convert real network description into the model definition which preserves all data that is significant for network operation and skip data which is not. Outlining the rules for such conversion and using a limited set of basic functional components provide the ground for automatic model creation for the network of different levels of complexity.Proposed approach to modelling of communication networks is based on decomposition of the overall function of every particular real network component into a set of functions that belong to some predefined basic set. Functions of the basic set include L3 routing, L2 switching, packet filtering, NAT, etc. Model of a real network component is defined as a group of functional nodes each of which implements some function from the basic set.Configuration and current state of network components that influence its operation are also decomposed into elements each of which relates to some particular functional node. Configuration of network components is modelled as a set of configuration storage elements and current state is modelled as a set of current state storage elements.Links that connect real network components and links that connect functional nodes in the model are presented as singledirection channels that implement propagation of L2 frames thus simplifying the model due to excluding physical layer (L1) from the scope.Using the proposed approach to modelling may allow to formalize conversion of a real network descrip- tion to a model thus making automated modelling possible. By using a sufficient basic set of functional nodes it is possible to model the network containing components of any complexity level.