A microfabricated fiber-integrated diamond magnetometer with ensemble nitrogen-vacancy centers
Show More
Applied Physics Letters
,
Volume 120; https://doi.org/10.1063/5.0089732
Abstract: Miniaturization is a trend of development toward practical applications for diamond nitrogen-vacancy centers-based sensors. We demonstrate a compact diamond magnetic field sensor device using a standard microfabrication process. A single-crystal-diamond plate is embedded in a cavity formed with stacking of three silicon chips. Thermal compression bonding is implemented at silicon–silicon and diamond–silicon interfaces ensuring mechanical robustness. The specific construction volume for the essential sensor component is about 10 × 10 × 1.5 mm3. By integrating a gradient index lens pigtailed fiber to the sensor device, 532-nm laser light and emitted fluorescence share a common path for excitation and detection. An omega-shaped transmission line for applied microwave power is fabricated directly on the surface of diamond. The integrated sensor device exhibits an optimized sensitivity of 2.03 nT·Hz−1/2 and over twofold enhancement of fluorescence collection efficiency compared to bare diamond. Such a sensor is utilized to measure a magnetic field change caused by switching a household electrical appliance.
Keywords: nitrogen / diamond / silicon / optimized / sup / sensor device / field / integrated
Scifeed alert for new publications
Never miss any articles matching your research from any publisher- Get alerts for new papers matching your research
- Find out the new papers from selected authors
- Updated daily for 49'000+ journals and 6000+ publishers
- Define your Scifeed now
Click here to see the statistics on "Applied Physics Letters" .