Differential Microbial Communities in Paddy Soils Between Guiyang Plateaus and Chengdu Basins Drive the Incidence of Rice Bacterial Diseases

Abstract
Southwest China has the most complex rice-growing regions in China. With great differences in topography, consisting mainly of basins and plateaus, ecological factors differ greatly between regions. In this study, bulk paddy soils collected from long-term rice fields in Chengdu (basins) and Guiyang (plateaus) were used to study the correlation between microbial diversity and the incidence of rice bacterial diseases. Results showed that the microbial community composition in paddy soils and the microbial functional categories differed significantly between basins and plateaus. They shared >70% of the dominant genera (abundance >1%), but the abundance of the dominant genera differed significantly. Functional analysis found that bulk paddy soils from Chengdu were significantly enriched in virulence factor–related genes; soils from Guiyang were enriched in biosynthesis of secondary metabolites, especially antibiotics. Correspondingly, Chengdu was significantly enriched in leaf bacterial pathogens Acidovorax, Xanthomonas, and Pseudomonas. Greenhouse experiments and correlation analysis showed that soil chemical properties had a greater effect on microbial community composition and positively correlated with the higher incidence of rice bacterial foot rot in Guiyang, whereas temperature had a greater effect on soil microbial functions and positively correlated with the higher severity index of leaf bacterial diseases in Chengdu. Our results provide a new perspective on how differences in microbial communities in paddy soils can influence the incidence of rice bacterial diseases in areas with different topographies.
Funding Information
  • National Natural Science Foundation of China (U1704234)
  • National Key Research and Development Program of China (2019YFE0108500)