Estimating abundance, temporary emigration, and the pattern of density dependence in a cyclic snowshoe hare (Lepus americanus) population in Yukon, Canada

Abstract
Estimates of demographic parameters based on capture-mark-recapture (CMR) methods may be biased when some individuals in the population are temporarily unavailable for capture (temporary emigration). We estimated snowshoe hare abundance, apparent survival, and probability of temporary emigration in a population of snowshoe hares (Lepus americanus Erxleben 1777) in the Yukon using Pollock’s robust design CMR model, and population density using spatially-explicit CMR models. Survival rates strongly varied among cyclic phases, seasons, and across five population cycles. We found strong evidence that temporary emigration was Markovian (i.e., non-random), suggesting that it varied among individuals that were temporary emigrant in the previous sampling period and those that were present in the sampled area. The probability of temporary emigration for individuals that were in the study area during the previous sampling occasion (γ´´) varied among cycles. Probability that individuals that were temporarily absent from the sampled area would remain temporary emigrants (γ´) showed strongly seasonal pattern, low in winter and high during summers. Snowshoe hare population density ranged from 0.017 (0.015–0.05) hares/ha to 4.43 (3.90–5.00) hares/ha and large-scale cyclical fluctuation. Autocorrelation functions and autoregressive analyses revealed that our study population exhibited statistically significant cyclic fluctuations, with a periodicity of 9-10 years.