New Search

Export article

Bandwidth adaptation in hierarchical scheduling using fuzzy controllers

Nima Moghaddami Khalilzad, Moris Behnam, Giacomo Spampinato, Thomas Nolte
Abstract: In our previous work, we have introduced an adaptive hierarchical scheduling framework as a solution for composing dynamic real-time systems, i.e., systems where the CPU demand of their tasks are subjected to unknown and potentially drastic changes during run-time. The framework uses the PI controller which periodically adapts the system to the current load situation. The conventional PI controller despite simplicity and low CPU overhead, provides acceptable performance. However, increasing the pressure on the controller, e.g, with an application consisting of multiple tasks with drastically oscillating execution times, degrades the performance of the PI controller. Therefore, in this paper we modify the structure of our adaptive framework by replacing the PI controller with a fuzzy controller to achieve better performance. Furthermore, we conduct a simulation-based case study in which we compose dynamic tasks such as video decoder tasks with a set of static tasks into a single system, and we show that the new fuzzy controller outperforms our previous PI controller.
Keywords: Feedback loop / Servers / Dynamic scheduling / Real-time systems / Equations / Multiplexing

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

References (21)
    Cited by 5 articles
      Back to Top Top