Hardware Security of Fog End-Devices for the Internet of Things

Abstract
The proliferation of the Internet of Things (IoT) caused new application needs to emerge as rapid response ability is missing in the current IoT end-devices. Therefore, Fog Computing has been proposed to be an edge component for the IoT networks as a remedy to this problem. In recent times, cyber-attacks are on the rise, especially towards infrastructure-less networks, such as IoT. Many botnet attack variants (Mirai, Torii, etc.) have shown that the tiny microdevices at the lower spectrum of the network are becoming a valued participant of a botnet, for further executing more sophisticated attacks against infrastructural networks. As such, the fog devices also need to be secured against cyber-attacks, not only software-wise, but also from hardware alterations and manipulations. Hence, this article first highlights the importance and benefits of fog computing for IoT networks, then investigates the means of providing hardware security to these devices with an enriched literature review, including but not limited to Hardware Security Module, Physically Unclonable Function, System on a Chip, and Tamper Resistant Memory.
Funding Information
  • Swedish Foundation for International Cooperation in Research and Higher Education (IB2019- 8185)
  • Horizon 2020 Framework Programme (773717)

This publication has 39 references indexed in Scilit: