Other versions available
Dataflow-Architecture Co-Design for 2.5D DNN Accelerators using Wireless Network-on-Package
Published: 18 January 2021
Proceedings of the 26th Asia and South Pacific Design Automation Conference
; https://doi.org/10.1145/3394885.3431537
Abstract: Deep neural network (DNN) models continue to grow in size and complexity, demanding higher computational power to enable real-time inference. To efficiently deliver such computational demands, hardware accelerators are being developed and deployed across scales. This naturally requires an efficient scale-out mechanism for increasing compute density as required by the application. 2.5D integration over interposer has emerged as a promising solution, but as we show in this work, the limited interposer bandwidth and multiple hops in the Network-on-Package (NoP) can diminish the benefits of the approach. To cope with this challenge, we propose WIENNA, a wireless NoP-based 2.5D DNN accelerator. In WIENNA, the wireless NoP connects an array of DNN accelerator chiplets to the global buffer chiplet, providing high-bandwidth multicasting capabilities. Here, we also identify the dataflow style that most efficienty exploits the wireless NoP's high-bandwidth multicasting capability on each layer. With modest area and power overheads, WIENNA achieves 2.2X-5.1X higher throughput and 38.2% lower energy than an interposer-based NoP design.
Keywords: Package / neural / DNN accelerator / power / chiplets / efficient / multicasting / wireless
Other Versions
Scifeed alert for new publications
Never miss any articles matching your research from any publisher- Get alerts for new papers matching your research
- Find out the new papers from selected authors
- Updated daily for 49'000+ journals and 6000+ publishers
- Define your Scifeed now
Click here to see the statistics on "Proceedings of the 26th Asia and South Pacific Design Automation Conference" .