New Search

Export article
Open Access

Bangla Handwritten Characters Recognition Using Convolutional Neural Network

Abstract: In the Bangla language, there are 50 complex-shaped characters and working with this huge amount of characters with an appropriate set of features is a tough problem to recognize handwritten characters. Moreover, ambiguity and precision errors are common in handwritten words. Furthermore, among a large number of complex-shaped letters, some are quite similar in shape, making handwritten Bangla characters difficult to recognize. In this work, we proposed a convolutional neural network-based approach for recognizing the handwritten Bangla alphabet. In character recognition, the convolutional neural network (CNN) outperforms most of the other models. However, to guarantee a satisfactory performance, CNNs usually need a great number of samples. Bangla handwriting recognition has been a hot topic for several years, but due to the similarity of many Bangla characters, it's difficult to achieve good results. By training and testing on Bangla character datasets, the model gets a 90.22% validation accuracy for Bangalekha isolated dataset and 93.22% validation accuracy for the Ekush dataset.
Keywords: neural / characters / handwritten / tough / Bangla / recognition / CNN / models / convolutional / recognize

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Australian Journal of Engineering and Innovative Technology" .
References (7)
    Back to Top Top