New Search

Export article

Differential degradation of RNA species by autophagy-related pathways in Arabidopsis

Daniel Hickl, Franziska Drews, Christopher Girke, David Zimmer, Timo Mühlhaus, Jan Hauth, Karl Nordström, Oliver Trentmann, Ekkehard H Neuhaus, David Scheuring,
Show More
Abstract: The plant vacuole recycles proteins and RNA delivered to it by autophagy. In this study, by isolating intact vacuoles from Arabidopsis plants, followed by subsequent RNA purification, and deep sequencing, we provide a comprehensive characterization of Arabidopsis vacuolar RNAome. In the vacuolar RNAome, we detected ribosomal RNAs, transfer RNAs, including those of chloroplast origin, and in addition small RNA types. As autophagy is a main mechanism for the transport of RNA to the vacuole, atg5-1 mutants deficient in autophagy were included in our analysis. We observed severely reduced amounts of most chloroplast-derived RNA species in these mutants. Comparisons with cellular RNA composition provided an indication of possible up-regulation of alternative RNA breakdown pathways. By contrast, vacuolar RNA processing and composition in plants lacking vacuolar ribonuclease 2, involved in cellular RNA homeostasis, only showed minor alterations, possibly because of the presence of further so far unknown vacuolar RNase species. Among the small RNA types, we detected mature miRNAs in all vacuolar preparations but at much lower frequency in atg5-1, raising the possibility of a biological role for vacuolar miRNAs.
Keywords: Autophagy / Chloroplast / Nucleotide / RNA / Ribosome / Vacuole

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Experimental Botany" .
References (54)
    Back to Top Top