
Role of Ti3AlC2 MAX phase on characteristics of in-situ synthesized TiAl intermetallics. Part IV: mechanical properties
Synthesis and Sintering
,
Volume 2,
pp 99-104; https://doi.org/10.53063/synsint.2022.22103
Abstract: In this study, the 4th part of a series of publications on the sintering and characterization of TiAl-Ti3AlC2 composite materials, the mechanical properties were measured and discussed. For this purpose, different contents of synthesized Ti3AlC2 reinforcement (10, 15, 20, 25, and 30 wt%) were added to metallic Ti and Al powders, then ball-milled and manufactured by spark plasma sintering (SPS) for 420 s at 900 ºC under 40 MPa. Flexural strength, fracture toughness and Vickers hardness were measured by 3-point technique, SENB method, and indentation technique, respectively. Increasing the Ti3AlC2 content resulted in improvement of the mechanical properties, so that TiAl-25 wt% Ti3AlC2 composite showed the best flexural strength and Vickers hardness (270 MPa and 4.11 GPa, respectively). Increasing amount of Ti3AlC additive had no significant effect on fracture toughness. Densification improvement, in-situ formation of Ti2AlC, and limitation of grain growth were recognized as the reasons of mechanical properties enhancement. In contrast, further addition of Ti3AlC2 (30 wt%) decreased the mechanical properties due to the reduction of density and formation of more Ti2AlC agglomerates in grain boundaries.
Keywords: toughness / mechanical properties / indentation / situ / sup / grain / AlC / sintering / flexural / hardness
Scifeed alert for new publications
Never miss any articles matching your research from any publisher- Get alerts for new papers matching your research
- Find out the new papers from selected authors
- Updated daily for 49'000+ journals and 6000+ publishers
- Define your Scifeed now
Click here to see the statistics on "Synthesis and Sintering" .