Determination of the geometry of laser-cutting fronts with high spatial and temporal resolution

Abstract
The melt flow velocity and the local surface angles of the cutting front during laser fusion cutting of 10 mm AISI 304 were determined for a laser power of 8 kW and a feed rate of 2 m/min. The cut front was recorded with a polarization goniometer, which uses the polarization of the process emission to determine the local surface angles, allowing to calculate the orientation of the normal vector of the surface. The records in this work were carried out with a frame rate of 75 kHz and a spatial resolution of about 30 µm. This allowed to identify big and small structures moving down the cutting front and to determine their velocities. The approximate velocity of the small structures was 9.1 m/s and for the big structures approx. 2.5 m/s. The information of a usual high-speed video was compared with the additionally obtained geometry information.

This publication has 4 references indexed in Scilit: