Critical-angle scattering of white light from a cylindrical bubble in glass: photographs of colors and computations

Abstract
A novel effect in the scattering of white light from bubbles consists of colored bands that appear near the critical scattering angle. The bands were photographed in the far-zone scattering from a cylindrical bubble in glass. Their existence is associated with the coarse structure present in the exact scattered intensity. A digital Butterworth filter was developed to remove (from computed intensities) fine structures that are lost when the optical bandwidth is large. The colors are found to be due to the combined effects of interference and diffraction (near the critical scattering angle) and dispersion of the refractive index. Coarse structures were previously modeled in the monochromatic scattering from spherical air bubbles in water. Colors are also to be expected in the appearance of clouds of bubbles in water. Such colors were reported [C. Pulfrich, Ann. Phys. Chem. (Leipzig) 33, 209 (1888)]. Some implications for the optical measurement of bubble size and surface quality are noted.

This publication has 12 references indexed in Scilit: