Symmetric Evaluation of Multimodal Human–Robot Interaction with Gaze and Standard Control

Abstract
Control of robot arms is often required in engineering and can be performed by using different methods. This study examined and symmetrically compared the use of a controller, eye gaze tracker and a combination thereof in a multimodal setup for control of a robot arm. Tasks of different complexities were defined and twenty participants completed an experiment using these interaction modalities to solve the tasks. More specifically, there were three tasks: the first was to navigate a chess piece from a square to another pre-specified square; the second was the same as the first task, but required more moves to complete; and the third task was to move multiple pieces to reach a solution to a pre-defined arrangement of the pieces. Further, while gaze control has the potential to be more intuitive than a hand controller, it suffers from limitations with regard to spatial accuracy and target selection. The multimodal setup aimed to mitigate the weaknesses of the eye gaze tracker, creating a superior system without simply relying on the controller. The experiment shows that the multimodal setup improves performance over the eye gaze tracker alone ( p < 0.05 ) and was competitive with the controller only setup, although did not outperform it ( p > 0.05 ).