Briefly Revisit Kinematic Control of Redundant Manipulators via Constrained Optimization

Abstract
Redundant manipulators are widely utilized in numerous applications among various areas in industry and service. Redundant manipulators take advantage of their inherent or acquired redundancy to achieve certain benefits in kinematic control. Different from non-redundant manipulators, optimization paradigms are more likely to be established and may be more efficient for kinematic control issues in redundant manipulators. In this paper, we revisit the perspective and methodology on constrained optimization paradigms for kinematic control of redundant manipulators.