Establishing a Range of Extreme Precipitation Estimates in California for Planning in the Face of Climate Change

Abstract
For California water resource planning in the face of climate change, hydrological and water distribution models require inputs of high spatial– and temporal–resolution temperature and precipitation projections. We used a quantile delta mapping (QDM) procedure along with bias correction and localized constructed analogs (LOCA) downscaling to produce 6-km temperature and precipitation fields that preserve the relative changes in these quantities from climate model projections. We developed a wetter moderate warming (WMW) case from the Representative Concentration Pathway (RCP) 4.5 emissions scenario and a dry extreme warming (DEW) case from the RCP8.5 scenario to establish a range of projected hydroclimatological conditions. In both cases, we found that extreme precipitation becomes more extreme, but the sign of changes in moderate precipitation events differs between the two cases. The precipitation estimate range is most broad in southern California, where it varies by a factor of 2 and is 50% across the Sierra Nevada. This approach, adopted by the California Department of Water Resources, balances a host of practical water resource planning considerations with the evolving state of the science for future hydroclimatological projections.