New Search

Export article
Open Access

Deep Learning In Medical Imaging And Drug Design

Surayya Ado Bala, Shri Ojha Kant, Adamu Garba Yakasai
Published: 16 December 2020

Abstract: Over the last decade, deep learning (DL) methods have been extremely successful and widely used in almost every domain. Researchers are now focusing on the convergence of medical imaging and drug design using deep learning to revolutionize medical diagnostic and improvement in the monitoring from response to therapy. DL a new machine learning paradigm that focuses on learning with deep hierarchical models of data. Medical imaging has transformed healthcare science, it was thought of as a diagnostic tool for disease, but now it is also used in drug design. Advances in medical imaging technology have enabled scientists to detect events at the cellular level. The role of medical imaging in drug design includes identification of likely responders, detection, diagnosis, evaluation, therapy monitoring, and follow-up. A qualitative medical image is transformed into a quantitative biomarker or surrogate endpoint useful in drug design decision-making. For this, a parameter needs to be identified that characterizes the disease baseline and its subsequent response to treatment. The result is a quantifiable improvement in healthcare quality in most therapeutic areas, resulting in improvements in quality and duration of life. This paper provides an overview of recent studies on applying the deep learning method in medical imaging and drug design. We briefly discuss the fields related to the history of deep learning, medical imaging, and drug design.
Keywords: Treatment / Decision making / models / Medical Imaging / Deep Learning / drug design / Extremely / Imaging and Drug

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Human Physiology" .
Back to Top Top