Dynamic Analysis of the Symbiotic Model of Commensalism and Parasitism with Harvesting in Commensal Populations

Abstract
This article discussed about a dynamic analysis of the symbiotic model of commensalism and parasitism with harvesting in the commensal population. This model is obtained from a modification of the symbiosis commensalism model. This modification is by adding a new population, namely the parasite population. Furthermore, it will be investigated that the three populations can coexist. The analysis carried out includes the determination of all equilibrium points along with their existence and local stability along with their stability requirements. From this model, it is obtained eight equilibrium points, namely three population extinction points, two population extinction points, one population extinction point and three extinction points can coexist. Of the eight points, only two points are asymptotically stable if they meet certain conditions. Next, a numerical simulation will be performed to illustrate the model’s behavior. In this article, a numerical simulation was carried out using the RK-4 method. The simulation results obtained support the results of the dynamic analysis that has been done previously.This article discussed about a dynamic analysis of the symbiotic model of The dynamics of the symbiotic model of commensalism and parasitism with harvesting in the commensal population. is the main focus of this study. This model is obtained from a modification of the symbiosis commensalism model. This modification is by adding a new population, namely the parasite population. Furthermore, it will be investigated that the three populations can coexist. The analysis carried out includes the determination begins by identifying the conditions for the existence of all equilibrium points along with their existence and local stability along with their stability requirements. From this model, it is obtained eight equilibrium points, namely three population extinction points, two population extinction points, one population extinction point and three extinction points can coexist. Of the eight points, only two points are asymptotically stable if they meet certain conditions. Next, a numerical simulation will be performed to illustrate the model’s behavior. In this article, a numerical simulation was carried out using the RK-4 method. The simulation results obtained support the results of the dynamic analysis that has been done previously.[VM1] [VM1]To add a mathematical effect to the article. There can be added mathematical models produced in the study at the end of this section.