Luminescent Properties of (SrNa)2-x Eux(MoO4)3 Red Phosphors Prepared by Using the Sol-Gel Process

Abstract
A series of (SrNa)2-xEux(MoO4)3 red phosphors have been synthesized by using the sol-gel method. X-ray diffraction, used to characterize the crystallization process of the phosphor precursors, indicates that the (SrNa)2-xEux(MoO4)3 phosphors had an SrMoO4 structure. The properties of these resulting phosphors have also been characterized by using photoluminescence (PL) spectra. The PL results indicate that all of the (SrNa)2-xEux(MoO4)3 phosphors exhibit intense red emissions under 275, 395, and 465-nm excitation. The two strongest lines at 395 and 465 nm in the excitation spectra of these phosphors match well with the two popular emissions from near-UV and blue GaN-based light-emitting diodes. Some process parameters for Eu3+ concentration, (C6H8O7)·H2O concentration, and solution pH value were also investigated. For (SrNa)2-xEux(MoO4)3 phosphors, there are two maximum emission intensities appearing with x = 0.6 and x = 1.4, respectively. When the molar ratio of citric acid is equal to that of metal cations and the solution pH is almost 4, (SrNa)2-xEux(MoO4)3 shows the strongest emission intensity compared to those under other conditions.

This publication has 1 reference indexed in Scilit: