On the relationship of proton irradiation and heat treatment of monocrystalline silicon with its structure

Abstract
The method of two-crystal X-ray diffractometry is used to control the quality and perfection of monocrystalline silicon obtained by implantation of hydrogen ions and subsequent thermal annealing, which is used in a number of semiconductor technologies. The principal feature of this approach is the ability to quickly obtain reliable experimental results, which was confirmed in this paper by the use of X-ray topography. The presented data provide information on the state of the disturbed layer of silicon crystals of n-type conductivity (ρ = 100 Om ⋅ cm) by orientation (111), 2 mm thick, implanted by protons with energy E = 200, 300, 100 + 200 + 300 keV, dose D = 2 ⋅ 1016cm-2 and subjected to subsequent thermal treatment in the temperature range T from 100 to 900 °С. We have established a non-monotonic dependence of the integral characteristics of the disturbed layer, namely the average effective thickness Leff and the average relative deformation ∆а/а, on annealing temperature, with the maximum level of distortion in the field of temperature ∼300 °С, using the method of integral characteristics. Obtained data allowed to assess the general condition of disturbed layer during thermal treatment.