Structural Dynamic Response of a Shield Tunnel under Aircraft Taxiing Load

Abstract
Dynamic load is an important factor affecting the safety and stability of subway tunnel structures. To obtain the variation law of shield tunnel structure dynamic response under aircraft taxiing load, a three-dimensional numerical simulation of such tunnel under the action of aircraft taxiing load is performed on the basis of a project involving a shield tunnel orthogonal underpass taxiway. The effects of sliding speed and tunnel depth on the structure of the shield tunnel are also analyzed. The results show that the transverse displacement and acceleration response of tunnel segment exhibit evident time-space effect under the action of aircraft taxiing load. The transverse displacement and arch waist acceleration of the shield segment increase first and then decrease. The transverse displacement of the arch waist reaches its maximum when the aircraft taxis directly above the tunnel. The sliding speed exhibits an evident influence on the dynamic response of shield tunnel structure. The vertical and convergence displacements of tunnel segments increase with the increase in sliding speed. The dynamic response of tunnel structure is significantly affected by the factors of tunnel buried depth. The vertical and convergence displacements of tunnel segments decrease with the increase in tunnel buried depth. Therefore, the safety of the shield tunnel structure can be ensured by controlling the taxiing speed when the aircraft taxis directly above the tunnel. The measures of increasing the buried depth of the tunnel or strengthening the tunnel structure need to be considered when the taxiing speed is large.
Funding Information
  • Special Support Plan for High Level Talents of Zhejiang Province (2020R52028)