Abstract
Solar flares, intense bursts of radiation, can disrupt the atmosphere and potentially affect communication, navigation and electrical systems. A newly developed miniaturised microwave radiometer used on a space-borne platform should offer astronomers unprecedented understanding of the largest explosive phenomena in our solar system. In this paper the activity and results of the EU funded research project FLARES are presented. Objective of FLARES has been the study, analysis and design of millimetre-wave (mm-wave) system-on-chip (SoC) radiometer for space-borne detection of solar flares. The proposed approach has contributed to reduce significantly the power consumption and weight with respect to the existing instruments for the observation and study of solar flares. In particular, the proposed SoC Dicke radiometer can achieve one order of magnitude improvement in terms of resolution, so allowing the detection of solar flares with relatively low intensity, i.e. about 100 times lower than those currently detected by the existing systems, owing to space-borne operations and the microchip-level miniaturization through silicon technology under space qualification.