Effectiveness of mRNA and ChAdOx1 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario

Top Cited Papers
Open Access
Abstract
Background SARS-CoV-2 variants of concern (VOC) are more transmissible and have the potential for increased disease severity and decreased vaccine effectiveness. We sought to estimate the effectiveness of BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), and ChAdOx1 (AstraZeneca) vaccines against symptomatic SARS-CoV-2 infection and severe outcomes (COVID-19 hospitalization or death) caused by the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) VOCs during December 2020 to May 2021. Methods We conducted a test-negative design study using linked population-wide vaccination, laboratory testing, and health administrative databases in Ontario, Canada. Findings Against symptomatic infection caused by Alpha, vaccine effectiveness with partial vaccination (≥14 days after dose 1) was higher for mRNA-1273 (83%) than BNT162b2 (66%) and ChAdOx1 (64%), and full vaccination (≥7 days after dose 2) increased vaccine effectiveness for BNT162b2 (89%) and mRNA-1273 (92%). Protection against symptomatic infection caused by Beta/Gamma was also higher with partial vaccination for mRNA-1273 (77%) than BNT162b2 (60%) and ChAdOx1 (48%), and full vaccination increased effectiveness for BNT162b2 (84%). Against Delta, vaccine effectiveness after partial vaccination tended to be lower compared to Alpha for mRNA-1273 (72% vs. 83%) and BNT162b2 (56% vs. 66%), but was similar to Alpha for ChAdOx1 (67% vs. 64%). Full vaccination with BNT162b2 increased protection against Delta (87%) to levels comparable to Alpha (89%) and Beta/Gamma (84%). Vaccine effectiveness against hospitalization or death caused by all VOCs was generally higher than for symptomatic infection after partial vaccination for all three vaccines. Interpretation Our findings suggest that even a single dose of these 3 vaccines provide substantial protection against these 4 VOCs, and 2 doses likely provide higher protection. Jurisdictions facing vaccine supply constraints might consider delaying second doses to more rapidly achieve greater overall population protection.

This publication has 16 references indexed in Scilit: