In vitro biological activity of synthesized silver nanoparticles using Myrtus extract

Abstract
This study aimed to synthesize and characterize silver nanoparticles (AgNPs) from M. communis laves, and determine their potential activity against human cancer cells as well as leishmanial and bacterial cells. The UV-visible spectroscopy showed an absorption peak at 430 nm wavelengths which is one of the characteristic features of AgNPs. The FESEM image showed irregular shape with a size range of 20-70 nm. MTT results in A172 and MCF-7 cell lines exposed to 5-240 g/mL for 48 hours revealed that M. communis-AgNPs were cytotoxic, with IC50 values of 93.2 g/mL for A172 cell lines and 89.1 g/mL for MCF-7 cell lines, respectively. DCFH-DA analysis showed that 24 h exposure to 25- 200 μg/mL concentrations of AgNPs significantly increased ROS production in cells that indicate oxidative stress induction by AgNPs. M. communis-AgNPs showed overexpression of BCL-2 and Bax genes compared with Glucantime®and negative control (p<0.001) as a potent leishmanicidal and bactericidal activity. The primary modes of action seem to be involved by promotion of the ROS production and up-regulation of BCL-2 and Bax against cancer cell lines. As a result, M. communis-AgNPs formulation should be regarded as a promising agent for potential anti-cancer, anti-leishmanial, and anti-bacterial drugs in therapeutic control programs