New Search

Export article

Machine Learning based KPI Monitoring of Video Streaming Traffic for QoE Estimation

Özge Celenk, Thomas Bauschert, Marcus Eckert

Abstract: Quality of Experience (QoE) monitoring of video streaming traffic is crucial task for service providers. Nowadays it is challenging due to the increased usage of end-to-end encryption. In order to overcome this issue, machine learning (ML) approaches for QoE monitoring have gained popularity in the recent years. This work proposes a framework which includes a machine learning pipeline that can be used for detecting key QoE related events such as buffering events and video resolution changes for ongoing YouTube video streaming sessions in real-time. For this purpose, a ML model has been trained using YouTube streaming traffic collected from Android devices. Later on, the trained ML model is deployed in the framework's pipeline to make online predictions. The ML model uses statistical traffic information observed from the network-layer for learning and predicting the video QoE related events. It reaches 88% overall testing accuracy for predicting the video events. Although our work is yet at an early stage, the application of the ML model for online detection and prediction of video events yields quite promising results.
Keywords: video streaming / machine learning / qoe monitoring / qoe

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "ACM SIGMETRICS Performance Evaluation Review" .
References (6)
    Back to Top Top