Structure of Reynolds shear stress in the central region of plane Couette flow

Abstract
The structures and mechanisms for maintaining a high Reynolds shear stress throughout the core region of plane turbulent Couette flow were examined by means of databases originating from a direct numerical simulation. At the relatively low Reynolds number considered, the mean shear rate and some one-point statistics exhibited a non-negligible variation in the core region, which conflicted with the postulated homogeneity. The slope of the mean velocity profile was below a theoretically established lower bound for the limit of infinite Re. Analysis of the time-averaged and structural information obtained by conditional sampling showed that mean shear generation and velocity-pressure gradient correlations played a crucial role in the generation and annihilation of the Reynolds shear stress. It was moreover observed that strong, very localized velocity fluctuations in the wall-normal direction were essential in both processes. A simple conceptual model was proposed to explain the physical significance of the pressure field associated with quadrant 2 events.

This publication has 20 references indexed in Scilit: