Shale Reservoir Heterogeneity: A Case Study of Organic-Rich Longmaxi Shale in Southern Sichuan, China

Abstract
Shale reservoir heterogeneity is strong, which seriously affects shale gas reservoir evaluation and reserves estimation. The Longmaxi Formation shale of the Luzhou block in southern Sichuan was taken as an example to characterize the pore distribution of shale over the full scale using micro-computed tomography (CT), focusing on ion beam scanning electron microscopy (FIB-SEM) and small-angle neutron scattering (SANS); further, the heterogeneity of the shale pore distribution over the full scale was explored quantitatively within different scales. The results show that shale micropores are dominated by microfractures that are mainly developed along the bedding direction and associated with organic matter, contributing 1.24% of porosity. Shale nanopores are more developed, contributing 3.57–4.72% porosity and have strong heterogeneity locally at the microscale, but the pore distribution characteristics show lateral homogeneity and vertical heterogeneity at the macroscale. In the same layer, the porosity difference is only 0.1% for the sheet samples with 2 cm adjacent to each other. Therefore, in shale core experiments in which parallel samples are needed for comparison, parallel samples should be in the same bedding position. This paper explores the extent of heterogeneity over the full scale of pore distribution from macro to micro, which has important significance for accurately characterizing the pore distribution of shale and further carrying out reservoir evaluation and estimation of reserves.