New Search

Export article
Open Access

Structural Characterizations for Glass Ionomer Cement Doped with Transition Metal Phthalocyanines

Gomaa El Damrawi, Amal Behairy, Riham Atef, El Damrawi Gomaa, Behairy Amal, Atef Riham
New Journal of Glass and Ceramics , Volume 9, pp 67-79; doi:10.4236/njgc.2019.94006

Abstract: Glass and Glass iomomer cement (GICs) based on a specific composition of cerium phosphate glass (40 CeO2-60P2O5) have been prepared. Effect of the doping type at a fixed doping concentration from metal-phthalocyanines (M-PCs) on material structure and morphologies has been carefully studied. The corresponding changes in the material structure were widely followed up by 31P MAS NMR, X-Ray diffraction and FTIR spectroscopy. The network structure of both base glass and GIC which all free from metal phthalocyanines has been confirmed to be amorphous. GIC doped with M-PCs has shown a more ordered structure. There were clear changes in the position and intensities of 31P NMR spectral peaks of glasses upon changing the dopant type. In all cases, a little concentration from M-Phthalocyanine (0.8 mol%) leads to changing the network structure from amorphous to a more ordered structure. Phosphate structural phases are evidenced to be formed upon addition of a fixed amount of M-PCs (Ga, Co, Fe). The morphologies of some selected samples were characterized by SEM. The micrographs have revealed that formulating of cerium phosphate powder of the amorphous glass with a polymeric acid successfully led to the formation of CePO4-H2O bundles phases. But formulation with GIC containing Co or Fe or Ga Phthalocyanine can simply form co-aligned linear slaps and elongated nanofibers which are consisted of hydrated and carbonated CePO4 a GaPO4, FePO4 or CoPO4 crystals. The structure of all doped materials has a lower crack length than that of base glass. This was discussed on bases of formation of more aligned and elongated tough-fibers in matrix of all doped materials. Such tough fibers have ability to withstand breaking stress via suppressing crack propagation.
Keywords: Cerium Phosphate / Metal Phthalocyanine / Bundles Phases / 31P NMR Spectros-copy

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "New Journal of Glass and Ceramics" .
References (1)
    Back to Top Top