Low-frequency seismic responses during microbial biofilm formation in sands

Abstract
This study investigates changes in low-frequency attenuation responses of sands during microbial formation of soft viscous biofilms, or extracellular polymeric substances (EPS). The resonant column experiments were conducted with two model bacteria Shewanella oneidensis MR1 and Leuconostoc mesenteroides, while monitoring changes in the wave velocities and damping ratios associated with EPS formation in sands. The results show that the accumulation of soft, viscous EPS hardly changes the wave velocities, both the shear and flexural modes. By contrast, the low-frequency attenuations, both torsional and flextural damping ratios, show significant increases with the accumulation of highly viscous EPS. It is found that contribution of EPS to seismic responses of water-saturated sands is mainly limited to the pore fluid component, causing additional energy dissipation during wave propagation, but with no or minimal impact on skeletal stiffness or no involvement in seismic stress transfer. With these unique and unprecedented low-frequency seismic data of biofilm-associated sands, the results suggest that formation and accumulation of soft, viscous EPS or biofilm by bacterial activities can be detected by monitoring seismic attenuation and can also alter the seismic attenuation responses of sands, such as the cases under earthquake loading or blast-induced compaction.